

Solve by using Zero - Product Rule: If A·B=0
then A=0 or B=0
()
$$(x+4)(x-8)=0$$

 $x+4=0$ or $x-8=0$
(2) $(3x-5)(3x+5)=0$
 $x+4=0$ or $x-8=0$
(3) $-2x(x+10)(x+0)=0$
 $x=0$
 $x=0$

Solve by factoring: 1) RHS = 0

$$\chi^{2} - 7\chi + 10 = 0$$

 $\chi^{2} - 7\chi + 10 = 0$
 $\chi^{2} - 10 = 0$
 $\chi^$

Solve
$$3\chi^{2} + 5 = 8\chi$$

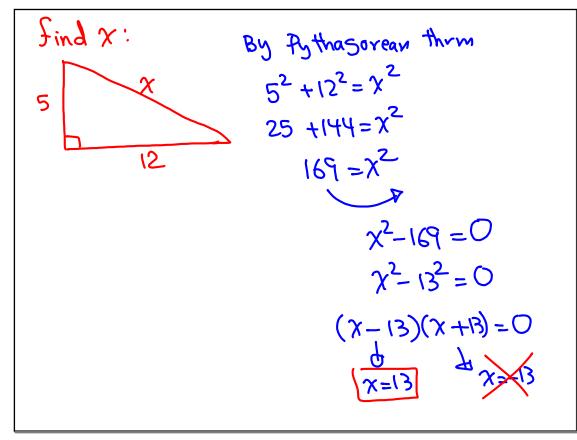
Make RHS O $3\chi^{2} + 5 - 8\chi = 0$
Factor LHS Comp. $3\chi^{2} - 8\chi + 5 = 0$
Use Z.F.T. $2 - 8\chi + 5 = 0$
 $\chi = 1 - 3\chi - 5\chi$
 $\chi = 1 - 3\chi - 5\chi$
 $\chi = 5 - 3\chi - 5\chi + 5 = 0$
 $\chi = 1 - 3\chi - 5\chi$
 $\chi = 5 - 3\chi - 5\chi + 5 = 0$
 $\chi = 1 - 3\chi - 5\chi$
 $\chi = 5 - 3\chi - 5\chi + 5 = 0$
 $\chi = 1 - 5(\chi - 1) = 0$
 $(\chi - 1)(-3\chi^{2} - 5) = 0$

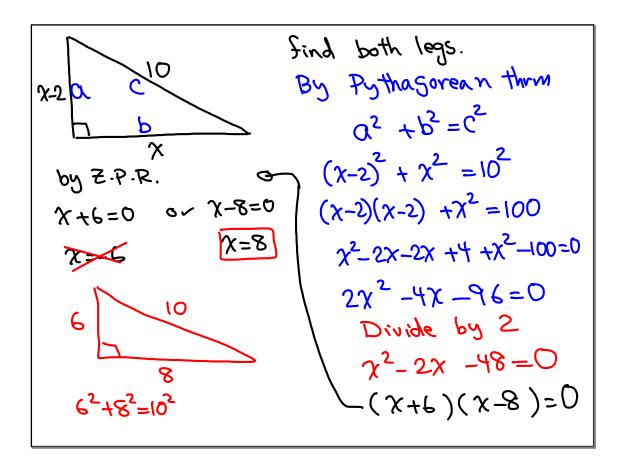
Solve
$$(2x + 1)(x + 3) = 25$$

Hint: FOIL \notin Simplify First.
 $2x^{2} + 6x + x + 3 = 25$
 $2x^{2} + 7x + 3 - 25 = 0$
 $2x^{2} + 7x + 3 - 25 = 0$
 $2x^{2} + 7x + 3 - 25 = 0$
 $2x^{2} + 7x - 22 = 0$
 $P_{=} - 44$
 $S = 7$
 -44
 $2x(x-2) + 11(x-2) = 0$
 $(x-2)(2x+11) = 0$
 $\begin{cases} -11 \\ 2x^{2} \end{cases}$
 $x = 2$
 $x = \frac{11}{2}$

The area of a rectangular garden is 40 ft².
the length is 3 ft longer than its width.
Sind its dimensions.
$$A = LW = 40$$

 $A = 40 ft^{2}$ $W = X$
 $L = X + 3$
 $5ft$ by 8ft
 $ft = 0$ $X^{2} + 3X = 40$
 $(X+3)X = 40$
 $\chi^{2} + 3X = 40$
 $(X+8)(X-5)=0$
by $Z \cdot P \cdot R$
 $\chi + 8 = 0$ $X - 5 = 0$
 $X = X$
 $X = 5$


the length of a rectangle is 4 meter shorter
than 3 times its width. The threa is
$$15m^2$$
.
Sind its dimensions.
 $A = 15$ $P3m$ by $5m$ $A = 15m^2$ $W=X$
 $LW = 15$ $L = 3X - 4$
 $LW = 15$ $L = 3X - 4$
 $(3X - 4) X = 15$ $3X^2 - 4X = 15$
 $3X^2 - 4X = 15$ $3X(X-3) + 5(X-3) = 0$
 $(X-3)(3X+5) = 0$
 $P = -45$ $X-3 = 0$ $3X+5 = 0$
 $X=3$ $X=3$


The product of two numbers is 21. One of them is I more than twice the other one. Find all such numbers. $\chi(2\chi+I)=21$ χ έ 2x+1 $2\chi^2 + \chi = 21$ x 1 5×+1 $2\chi^{2} + \chi - 21 = 0$ 3 Γ $\frac{-1}{2} \left[2(-\frac{1}{2}) + 1 = -1 + 1 = -6 \left(2x + 1 \right) (x - 3) = 0 \right]$ $\frac{\sqrt{2}}{2} \left[2(-\frac{1}{2}) + 1 = -1 + 1 = -6 \left(2x + 1 \right) (x - 3) = 0 \right]$ 3 and 7

The Sum of Squares of two consecutive odd
integers is 74 find all such integers.

$$\chi \notin \chi + 2$$
 $\chi^{2} + (\chi + 2)^{2} = 74$
By Z.P.R.
 $\chi^{2} + (\chi + 2)(\chi + 2) = 74$
 $\chi^{2} + (\chi + 2)(\chi + 2) = 74$
 $\chi^{2} + (\chi + 2)(\chi + 2) = 74$
 $\chi^{2} + \chi^{2} + 2\chi + 2\chi + 4 = 74$
 $\chi^{2} + \chi^{2} + 2\chi + 2\chi + 4 = 74$
 $2\chi^{2} + 4\chi + 4 - 74 = 0$
 $2\chi^{2} + 4\chi + 4 - 74 = 0$
 $2\chi^{2} + 4\chi - 70 = 0$
Divide by 2 to reduce
 $\chi^{2} + 2\chi - 35 = 0$
 $(\chi + 7)(\chi - 5) = 0$

The Sum of Square of two Cons. even integers is 52. find all such integers. $\chi^{2} + (\chi + 2)^{2} = 52$ χ έ χ+2 By Z.F.P. $x^{2} + \chi^{2} + 4\chi + 4 = 52$ $2x^{2} + 4x - 48 = 0$ X+6=0 X-4=0 Divide by 2 to reduce x=-6 x=4 numbers $\chi^{2} + 2\chi - 24 = 0$ X 1 X+2 4-6 6 _ (X +6)(X -4)=O -4 426 or -62-4

One leg of a right triangle is 4 cm. Hypotenuse is I cm shorter than twice the other legt. find the measure of missing leg and hypotenuse. γ By Pythagorean thrm 4 cm $0^2 + b^2 = C^2$ $\chi^{2} + (4)^{2} = (2\chi - 4)^{2}$ $\chi^{2} + 16 = (2\chi - 4)(2\chi - 1)$ $\chi^{2} + 16 = (2\chi - 4)(2\chi - 1)$ $\chi^{2} - 4\chi + 1 - \chi^{2} + 16 = 0$ $\chi^{2} - 4\chi - 15 = 0$ $\chi^{2} + (4)^{2} = (2\chi - 1)^{2}$ $\chi^2 + 16 = 4\chi^2 - 2\chi - 2\chi + 1$

$$3\chi^{2} [-4\chi] -15=0 = P_{3}\chi^{2} [-9\chi +5\chi] -15=0$$

Sactor \notin Solve

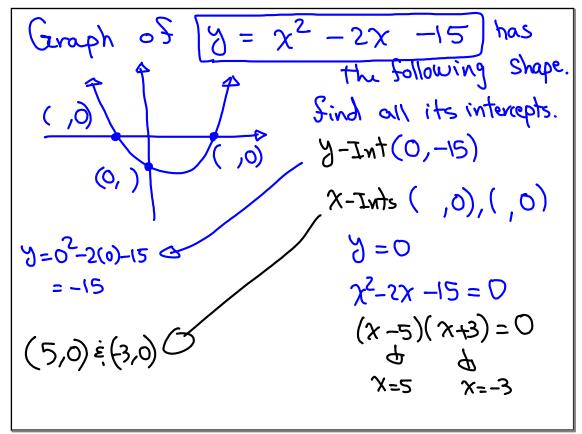
$$P=-45, -9 \notin 5$$

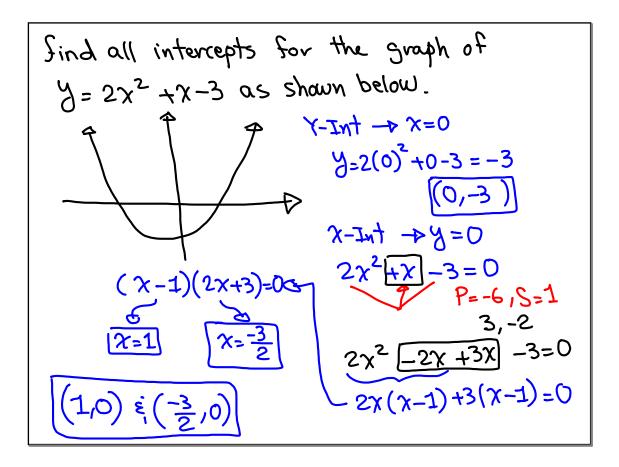
$$S = -4$$

$$2(3) + = 5 \text{ cm}$$

$$4\text{ cm}$$

$$X = 3$$


$$\chi = 3$$


$$\chi = 3$$

$$X = 3$$

Three Sides of a right triangle are three
Consecutive even integers. Use inches as Unit.
1) Draw
$$\dot{\epsilon}$$
 label such triangle
2) find all 3 Sides x
3) find its perimeter $x+2$
4) find its area. Using Pythasorean thrm
 $2x^{2}(+4x)+4-x^{2}-8x$ $x^{2}+(x+2)-(x+4)$
 $x^{2}+(x+2)-(x+4)$
 $x^{2}+(x+2)-(x+4)$
 $x^{2}+(x+2)-(x+4)$
 $x^{2}+(x+4)-(x+4)-(x+4)$
 $x^{2}+(x+4)-(x+4)$

$$x^{2} - 4x - 12 = 0$$
(x-6)(x+2)=0 6in 10in
x=6 x=-2
A = $\frac{6 \cdot 8}{2} = \frac{48}{2} = \frac{24 \sin^{2}}{2}$
P = $6 + 8 + 10$
-24 in

